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Abstract
The spin-polarized electron momentum distribution (magnetic Compton
profile: MCP) of ferromagnetic CeRh3B2 has been measured using the magnetic
Compton scattering technique at 10 K for the [112̄0] direction. In this
compound, the orbital moment dominates the magnetization. An analysis of
the MCP reveals that the Ce 4f and Ce 5d spin moments are aligned parallel
with a value of −0.68 ± 0.08 and 0.41 ± 0.04 µB , respectively, while Rh 4d
electrons do not carry any significant spin moment. The ratio of orbital to spin
moments for Ce 4f electrons, which has been determined from comparison of
the present data with recent polarized neutron diffraction data, is rather smaller
than that for Ce3+ ions. This result implies strong hybridization of the Ce 4f
orbital with the orbitals on the surrounding ions.

1. Introduction

CeRh3B2 has drawn much attention due to its unusual magnetic properties. This compound
orders magnetically with an unusually high Curie temperature of 115 K, despite its small
saturated magnetic moment of 0.4 µB [1]. Itinerant ferromagnetism associated with Rh 4d
or Ce 4f bands has been ruled out experimentally, and currently it is accepted that localized
or nearly localized Ce 4f electrons are responsible for the ferromagnetism [2–6]. The strong
couplings between the localized moments are, however, not explained by the Ruderman–
Kittel–Kasuya–Yosida (RKKY) interaction [7, 8]. At present it is conceivable that the strong
inter-atomic Ce 4f–5d hybridization and the intra-atomic Ce 4f–5d exchange interaction play
important roles in the coupling between the Ce 4f moments [9–11]. In order to examine this
scenario, experimental determination of the spin moment on each electronic state is essential.
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Magnetic Compton scattering (MCS) probes uniquely the spin component of the
magnetization in a sample [12, 13]. When the incident x-rays are circularly polarized, the
scattering cross-section contains a spin-dependent term. The experimental extraction of the
spin dependence results in a magnetic Compton profile (MCP), Jmag(pz), that is defined as the
one-dimensional projection of the spin-polarized electron momentum distribution:

Jmag(pz) =
∫ ∫

[n↑(p) − n↓(p)] d px d py, (1)

where n↑(p) and n↓(p) are the momentum densities of the majority and minority spin bands,
respectively. The area under the MCP is equal to the total spin moment (µspin) per formula
unit (FU): ∫ +∞

−∞
Jmag(pz) d pz = µspin. (2)

When the MCP can be decomposed into a few partial profiles with the characteristic shape
of a specific electronic state, the area under the partial profile gives the partial spin moment
associated with that state. In this paper we report a MCS study on a well-characterized single
crystal of CeRh3B2.

2. Experiment

An ingot of CeRh3B2 was grown by the Czochralski pulling method in a tetra-arc furnace, and
a single crystal was cut from the ingot in a rectangular shape with a size of 2.1×2.3×3.5 mm3.
The MCS experiments were carried out on the high-energy inelastic scattering beamline
(BL08W) at SPring-8 [14]. The spectrometer consists of a superconducting magnet and a
10-element Ge solid-state detector. The incident x-ray energy was 175 keV. The scattering
angle was 178.5◦. The sample’s magnetization was reversed with a magnetic field of ±2.5 T,
and a MCP was measured at 10 K along the [112̄0] direction. The overall momentum resolution
was 0.45 atomic units (au).

3. Results and discussion

In order to normalize the area under the experimental MCP of the Ce sample to an absolute
spin moment, additional experiments were carried out on Fe, Ni, Co at room temperature. The
magnetic effect R is defined by the following equation:

R = I + − I −

I + + I − , (3)

where I + and I − are the integrated intensity of Compton-scattered x-ray spectra when the
direction of the magnetic field is parallel (+) and anti-parallel (−) to the scattering vector,
respectively. The magnetic effect is also proportional to the value of the spin moment (µspin)

divided by the effective number of electrons (N) in the FU:

R = A

(
µspin

N

)
. (4)

The coefficient A = 0.2037 ± 0.0238 was determined by a linear fit to the data for the Fe,
Co, and Ni results, where the values of 2.083, 1.523, and 0.518 were used as µspin [15] for Fe,
Co, and Ni, respectively. The magnetic effect R of CeRh3B2 was −0.001 40 ± 0.000 15. This
leads to the spin moment µspin = −1.16 ± 0.12 µB using equation (4). Comparing with the
saturated magnetization of 0.45 µB , we obtain the orbital moment of 1.61 ± 0.12 µB .
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Figure 1. The experimental MCP of CeRh3B2 and the best fit with atomic profiles to the
experimental MCP.

Table 1. Experimental spin and orbital moments on each electronic state. The spin moments are
obtained from the MCS experiments. The orbital moments are determined by comparison between
the MCS data and the polarized neutron diffraction data [18].

Ce 4f Ce 5d Rh 4d

Spin Orbital Spin Orbital Spin Orbital
(µB) (µB) (µB) (µB) (µB) (µB)

−0.69(8) +1.25(9) −0.41(4) +0.23(6) −0.03(4) — Present work
−0.30(4) +0.86(5) −0.34(7) +0.16(7) −0.05(3) — Reference [17]

Figure 1 shows the experimental MCP along the [112̄0] direction, in which the area under
the profile is normalized to the value of −1.16 µB . The MCP is decomposed into partial
profiles by fitting with the Ce 4f, Ce 5d, and Rh 4d atomic profiles [16]. The area under
each fitted profile is presented in table 1, together with those obtained by Yaouanc et al [17].
The difference in Ce 4f spin moment between the present and previous results is probably
due to the inadequate fit to the previous data which has fewer data points with poor statistical
accuracy. A noticeable point is that the Ce 5d electrons have a significant spin moment which
is parallel to the Ce 4f one. This suggests effects of the intra-atomic Ce 4f–5d exchange
interaction. Comparing the present results with those obtained from the polarized neutron
scattering experiments [18], we have determined the orbital moments on the Ce 4f and Ce 5d
states (see table 1). The ratio of orbital to spin moments on the Ce 4f state is ∼1.8, which is
smaller than the value of 4 expected for the Ce3+ ion. This moment reduction can be explained
by the strong inter-atomic hybridization of the Ce 4f orbital with the orbitals on the surrounding
ions [19].

Consequently, the present study supports the conclusion that both the inter-atomic
4f–5d hybridization and the intra-atomic 4f–5d exchange interaction play important roles in
explaining the unusual ferromagnetism of CeRh3B2.
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